Intro to Statistics 8 Curriculum #### **Unit 1 Bar, Line and Circle Graphs** | Estimated time frame for unit | Big Ideas | Essential
Question | Concepts | Competencies | Lesson Plans
and Suggested
Resources | Vocabulary | Standards/Eligible
Content | |-------------------------------|---|--|---|--|---|---|--| | 8 Days | Data can be modeled and used to make inferences. | In what ways are mathematical attributes of objects or processes measured, calculated and/or interpreted? | Categorical and
Quantitative
Data
Bar graphs | Students should be able to analyze and/or use them to make predictions (circle graph, line graph, Bar graph, boxand-whisker plots, stem-and-leaf plots,) | Students will be able to collect data and utilize this data using bar graphs. | Bar graph | A1.2.3.2.1 Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation. A1.2.3.2.2 Analyze data, make predictions, and/or answer questions based on displayed data (box-and-whisker plots, stem-and-leaf plots, scatter plots, measures of central tendency, or other representations). | | | Data can be
modeled and
used to make
inferences. | In what ways are mathematical attributes of objects or processes measured, calculated and/or interpreted? | Categorical and
Quantitative
Data
Samples and
Surveys | Students should be able to make inferences and justify conclusions based on sample surveys, experiments, and observational studies. | Students will be able to understand how to get a good sample of data and use that in creating a survey. | Quantitative
Qualitative
Population
Sample
Bias | A1.2.3.2.1 Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation. | | | Data can be
modeled and
used to make
inferences. | In what ways
are
mathematical
attributes of
objects or
processes
measured,
calculated | Categorical and
Quantitative
Data | Students should be able to analyze and/or use them to make predictions (circle graph, line graph, Bar graph, boxand-whisker plots, | Students will
be able to read
and create a
Line Graphs | Line Graph | A1.2.3.2.1 Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation. A1.2.3.2.2 Analyze data, make predictions, and/or answer questions based on displayed data (box-and-whisker plots, stem-and-leaf plots, scatter plots, measures of central tendency, or other representations). | | | Data can be modeled and used to make inferences. Data can be modeled and used to make inferences. | and/or interpreted? In what ways are mathematical attributes of objects or processes measured, calculated and/or interpreted? In what ways are mathematical attributes of objects or processes measured, calculated and/or interpreted? | Categorical and Quantitative Data Categorical and Quantitative Data | stem-and-leaf plots , scatter plots,) Students should be able to analyze and/or use them to make predictions (circle graph, line graph, Bar graph, box- and-whisker plots, stem-and-leaf plots , scatter plots,) Students should be able to analyze and/or use them to make predictions (circle graph, line graph, Bar graph, box- and-whisker plots, stem-and-leaf plots , scatter | Students will create a circle graph (pie chart) given a set of data. Students will be able to extract information from a pie chart (circle graph). | Circle Graph | A1.2.3.2.1 Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation. A1.2.3.2.2 Analyze data, make predictions, and/or answer questions based on displayed data (box-and-whisker plots, stem-and-leaf plots, scatter plots, measures of central tendency, or other representations). A1.2.3.2.1 Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation. A1.2.3.2.2 Analyze data, make predictions, and/or answer questions based on displayed data (box-and-whisker plots, stem-and-leaf plots, scatter plots, measures of central tendency, or other representations). | | | | | |-------------------------------|--|---|--|---|---|--------------|--|--|--|--|--| | | | Review Comn | non Assessmen | ts Unit 1 Bar, Line | and Circle Grapl | ns 1 Day | | | | | | | | Test Common Assessments Unit 1 Bar, Line and Circle Graphs 1 Day | | | | | | | | | | | | | Unit 2 Frequency Tables, Line Plots and Histograms | | | | | | | | | | | | Estimated time frame for unit | Big Ideas | Essential
Question | Concepts | Competencies | Lesson Plans
and Suggested
Resources | Vocabulary | Standards/Eligible
Content | | | | | | 3 Days | Data can be modeled and used to make inferences. | Does the type of
data influence
the choice of
display? | Categorical and
Quantitative
Data | Students should be able to analyze and/or use them to make predictions (circle graph, line graph, Bar graph, boxand-whisker plots, stem-and-leaf plots, scatter plots,) Frequency Tables | Students will
be able to read
and create
Frequency
Tables. | Frequency
Interval
Frequency
Table | A1.2.3.2.1 Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation. A1.2.3.2.2 Analyze data, make predictions, and/or answer questions based on displayed data (box-and-whisker plots, stem-and-leaf plots, scatter plots, measures of central tendency, or other representations). | |--------|--|---|---|--|--|---|--| | | Data can be modeled and used to make inferences. | Does the type of
data influence
the choice of
display? | Categorical and
Quantitative
Data | Students should
be able to analyze
and/or use them
to make
predictions (circle
graph, line graph,
Bar graph, box-
and-whisker
plots, stem-and-
leaf plots, scatter
plots,) | Students will
be able to read
and create a
line plot given
a set of data. | Line Plot | A1.2.3.2.1 Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation. A1.2.3.2.2 Analyze data, make predictions, and/or answer questions based on displayed data (box-and-whisker plots, stem-and-leaf plots, scatter plots, measures of central tendency, or other representations). | | | Data can be modeled and used to make inferences. | Does the type of
data influence
the choice of
display? | Categorical and
Quantitative
Data | Students should
be able to analyze
and/or use them
to make
predictions (circle
graph, line graph,
Bar graph, box-
and-whisker
plots, stem-and-
leaf plots, scatter
plots,) | Students will
be able to read
and create a
histogram
given a set of
data. | Histogram | A1.2.3.2.1 Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation. A1.2.3.2.2 Analyze data, make predictions, and/or answer questions based on displayed data (box-and-whisker plots, stem-and-leaf plots, scatter plots, measures of central tendency, or other representations). | # **Unit 3 Central Tendency** | Estimated time frame for unit | Big Ideas | Essential
Question | Concepts | Competencies | Lesson Plans
and Suggested
Resources | Vocabulary | Standards/Eligible
Content | |-------------------------------|---|--|---|--|--|---|--| | 5 Days | Data can be modeled and used to make inferences. | In what ways are the mathematical attributes of objects measured, calculated, and/or interpreted? | Categorical and
Quantitative
Data | Students should be able to calculate and/or make predictions based upon measures of central tendency. Students should be able to use measures of dispersion to describe a set of data. (range, quartiles, interquartile ranges.) Finding Mean, Median, Mode, Range | Students will be able to find & calculate mean, median, mode and range. | Data
Mean
Median
Mode
Range | A1.2.3.1.1 Calculate and/or interpret the range, quartiles, and interquartile range of data. A1.2.3.2.2 Analyze data, make predictions, and/or answer questions based on displayed data (box-and-whisker plots, stem-and-leaf plots, scatter plots, measures of central tendency, or other representations). | | | Data can be
modeled and
used to make
inferences. | In what ways
are the
mathematical
attributes of
objects
measured,
calculated,
and/or
interpreted | Categorical and
Quantitative
Data | Students should
be able to
calculate and/or
make predictions
based upon
measures of
central tendency. | Students will
be able to
analyze what
an outlier does
to a data set. | Measures of
Central
Tendency
Outlier | A1.2.3.2.1 Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation. A1.2.3.2.2 Analyze data, make predictions, and/or answer questions based on displayed data (box-and-whisker plots, stem-and-leaf plots, scatter plots, measures of central tendency, or other representations). | | | Data can be
modeled and
used to make
inferences. | In what ways
are the
mathematical
attributes of | Categorical and
Quantitative
Data | Students should
be able to
calculate and/or
make predictions | Students will
be able to
differentiate
when it's best | | A1.2.3.2.1 Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation. A1.2.3.2.2 Analyze data, make predictions, and/or answer | | objects | based upon | to use each of | questions based on displayed data (box-and- | |-------------|-------------------|----------------|---| | measured, | measures of | the measures | whisker plots, stem-and-leaf plots, scatter | | calculated, | central tendency. | of central | plots, measures of central tendency, or other | | and/or | | tendency. | representations). | | interpreted | Describing Data | | | | | | | | Review Common Assessments Unit 2 & 3 Frequency Tables, lines Plots, and Histogram & Central Tendency 1 Day Test Common Assessments Unit 2&3 Frequency Tables, lines Plots, and Histogram & Central Tendency 1 Day #### Unit 4 Stem-and-Leaf Plots/ Box-and-Whisker Plots | Estimat
time fra
for unit | ame | Essential
Question | Concepts | Competencies | Lesson Plans
and Suggested
Resources | Vocabulary | Standards/Eligible
Content | |---------------------------------|--|--|---|---|---|---------------------------------------|---| | 7 day | Data can be modeled and used to make inferences | In what ways are mathematical attributes of objects or processes measured, calculated and/or interpreted? | Categorical and
Quantitative
Data | Students should be able to analyze and/or use them to make predictions (circle graph, line graph, Bar graph, boxand-whisker plots, stem-and-leaf plots , scatter plots,) Creating Stemand-Leaf Plots | Students will
be able to
create stem-
and-leaf plots
and extract
information
from them. | Stem-and-Leaf
plot
Distribution | A1.2.3.2.1 Estimate or calculate to make predictions based on circle, line, bar graphs, measure of central tendency, or other representations. A1.2.3.2.2 Analyze data , make predictions, and/or answer questions based on display data (box-and-whisker plots, stem-and –leaf plots scatter plots, measures of central tendency, or other representations. | | | Data can be
modeled and
used to make
inferences | In what ways
are
mathematical
attributes of
objects or
processes
measured,
calculated | Categorical and
Quantitative
Data | Students should
be able to analyze
and/or use them
to make
predictions (circle
graph, line graph,
Bar graph, box-
and-whisker | Students will
be able to
analyze stem-
and-leaf plots
and create
back-to-back
stem-and-leaf
plots. | | A1.2.3.2.1 Estimate or calculate to make predictions based on circle, line, bar graphs, measure of central tendency, or other representations. A1.2.3.2.2 Analyze data, make predictions, and/or answer questions based on display data (box-and-whisker plots, stem-and –leaf plots scatter plots, measures of central tendency, or other representations. | | | and/or interpreted? | | plots, stem-and-
leaf plots , scatter
plots,) | | | | |--|---|---|--|---|---|--| | | | | Analyzing Stem-
and-Leaf Plots | | | | | Data can be
modeled and
used to make
inferences | In what ways are mathematical attributes of objects or processes measured, calculated and/or interpreted? | Categorical and
Quantitative
Data | Students should be able to analyze and/or use them to make predictions (circle graph, line graph, Bar graph, boxand-whisker plots, stem-and-leaf plots, scatter plots,) Students should be able to use measures of dispersion to describe a set of data. (range, quartiles, interquartile | Students will
be able to
create and read
box-and-
whisker plots | Box-and-whisker plot Lower extreme Lower quartile Median Upper quartile Upper extreme | A1.2.3.2.1 Estimate or calculate to make predictions based on circle, line, bar graphs, measure of central tendency, or other representations. A1.2.3.2.2 Analyze data , make predictions, and/or answer questions based on display data (box-and-whisker plots, stem-and –leaf plots scatter plots, measures of central tendency, or other representations. | | | | | ranges.)
Creating Box-&-
Whisker Plots | | | | | Data can be
modeled and
used to make
inferences | In what ways are mathematical attributes of objects or processes measured, calculated and/or interpreted? | Categorical and
Quantitative
Data | Students should
be able to analyze
and/or use them
to make
predictions (circle
graph, line graph,
Bar graph, box-
and-whisker
plots, stem-and-
leaf plots, scatter
plots,) | Students will
analyze box-
and-whisker
plots for their
critical values,
and decipher
what they
mean. | Critical Values | A1.2.3.2.1 Estimate or calculate to make predictions based on circle, line, bar graphs, measure of central tendency, or other representations. A1.2.3.2.2 Analyze data, make predictions, and/or answer questions based on display data (box-and-whisker plots, stem-and –leaf plots scatter plots, measures of central tendency, or other representations. | | | | be able to use measures of dispersion to describe a set of data. (range, quartiles, interquartile ranges.) Critical Values | | | | | | | | | |---|---|--|---|--|--|--|--|--|--|--| | Data can be modeled and used to make inferences | | Students should be able to analyze and/or use them to make predictions (circle graph, line graph, Bar graph, boxand-whisker plots, stem-and-leaf plots, scatter plots,) Students should be able to use measures of dispersion to describe a set of data. (range, quartiles, interquartile ranges.) Analyzing Box-&-Whisker Plots | Students will be able to interpret information from box-and-whisker plots (and explain the distribution of them). | | A1.2.3.2.1 Estimate or calculate to make predictions based on circle, line, bar graphs, measure of central tendency, or other representations. A1.2.3.2.2 Analyze data, make predictions, and/or answer questions based on display data (box-and-whisker plots, stem-and –leaf plots scatter plots, measures of central tendency, or other representations. | | | | | | | Review Co | Review Common Assessments Unit 4 Stem-and-Leaf Plots/ box-and-Whisker Plots 1 Day | | | | | | | | | | | Test Comi | Test Common Assessments Unit 4 Stem-and-Leaf Plots/ box-and-Whisker Plots 1 Day | | | | | | | | | | # **Unit 5 Probability** | Estimated time frame for unit | Big Ideas | Essential
Question | Concepts | Competencies | Lesson Plans
and Suggested
Resources | Vocabulary | Standards/Eligible
Content | |-------------------------------|--|--|-------------|---|--|-------------|---| | 12 Days | Data can be
modeled and
used to make
inferences | How can
Probability and
data analysis be
used to make
predictions? | Probability | Students should be able to apply the rules of probability to compute probabilities of compound events in a uniform probability model. Simple Probability | Students will
be able to
calculate
simple
probabilities. | Probability | A1.2.3.3.1. Find probabilities for compound events (e.g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal or percent. | | | Data can be modeled and used to make inferences | How can Probability and data analysis be used to make predictions? | Probability | Students should be able to apply the rules of probability to compute probabilities of compound events in a uniform probability model. Students should be able to apply probability to practical situations, including compound events. Real World Probability | Students will be able to apply simple probabilities to real life situations. | | A1.2.3.3.1. Find probabilities for compound events (e.g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal or percent. | | | Data can be | How can | Probability | Students should | Students will | | A1.2.3.3.1. Find probabilities for compound events (e.g., find | | modeled and
used to make
inferences | Probability and data analysis be used to make predictions? | | be able to apply the rules of probability to compute probabilities of compound events in a uniform probability model. Theoretical & Experimental Probability | be able to compare and distinguish between theoretical and experimental probability. | | probability of red and blue, find probability of red or blue) and represent as a fraction, decimal or percent. | |--|--|-------------|---|--|--------------|---| | Data can be modeled and used to make inferences | How can
Probability and
data analysis be
used to make
predictions? | Probability | Students should be able to apply the rules of probability to compute probabilities of compound events in a uniform probability model. Students should be able to apply probability to practical situations, including compound events. Rolling Number Cubes | Students will take part in a real-life activity that compares theoretical and experimental probability. | | A1.2.3.3.1. Find probabilities for compound events (e.g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal or percent. | | Data can be
modeled and
used to make
inferences | How can
Probability and
data analysis be
used to make
predictions? | Probability | Students should
be able to apply
the rules of
probability to
compute
probabilities of
compound events
in a uniform
probability
model. | Students will
be able to
expand their
knowledge of
probability by
creating tree
diagrams of the
data. | Tree Diagram | A1.2.3.3.1. Find probabilities for compound events (e.g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal or percent. | | 1 | 1 | 1 | Г | | | T | |--|--|-------------|--|--|-----------------------|---| | | | | Students should
be able to
recognize random
processes
underlying
statistical
experiments. | | | | | Data can be modeled and used to make inferences | How can Probability and data analysis be used to make predictions? | Probability | Students should be able to apply the rules of probability to compute probabilities of compound events in a uniform probability model. Students should be able to recognize random processes underlying statistical experiments. Counting Principle | Students will discover how to find total outcomes using a shortcut. | Counting
Principle | A1.2.3.3.1. Find probabilities for compound events (e.g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal or percent. | | Data can be
modeled and
used to make
inferences | How can
Probability and
data analysis be
used to make
predictions? | Probability | Students should
be able to
recognize random
processes
underlying
statistical
experiments. | Students will
be able to use
the counting
principle to
solve more
difficult
probability
outcomes. | | A1.2.3.3.1. Find probabilities for compound events (e.g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal or percent. | | Data can be
modeled and
used to make | How can
Probability and
data analysis be | Probability | Students should
be able to apply
the rules of
probability to | Students will distinguish between permutations | Combination | A1.2.3.3.1. Find probabilities for compound events (e.g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal or percent. | | T | 1 | 1 | _ | 1 | ı | | |--|--|-------------|---|--|---|---| | inferences | used to make predictions? | | compute probabilities of compound events in a uniform probability model. Combinations & | and combinations. | | | | Data can be
modeled and
used to make
inferences | How can Probability and data analysis be used to make predictions? | Probability | Permutations Students should be able to apply the rules of probability to compute probabilities of compound events in a uniform probability model. Students should be able to recognize random processes underlying statistical experiments. Using Combinations & | Students will calculate total outcomes of permutations and combinations. | | A1.2.3.3.1. Find probabilities for compound events (e.g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal or percent. | | Data can be
modeled and
used to make
inferences | How can
Probability and
data analysis be
used to make
predictions? | Probability | Permutations Students should be able to apply the rules of probability to compute probabilities of compound events in a uniform probability model. Students should | Students will calculate total outcomes of permutations and combinations. | | A1.2.3.3.1. Find probabilities for compound events (e.g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal or percent. | | | | | | be able to recognize random processes underlying statistical experiments. Calculating Total Outcomes (Permutations & Combinations) | | | | | | | | | |-------------------------------|--|-----------------------|----------|---|--|------------|-------------------------------|--|--|--|--|--| | | Review Common Assessments Unit 5 Probability 1 Day | | | | | | | | | | | | | | Test Common Assessments Unit 5 Probability 1 Day | | | | | | | | | | | | | Cumulative Review | | | | | | | | | | | | | | | | | | Cumulative | Review | | | | | | | | | Estimated time frame for unit | Big Ideas | Essential
Question | Concepts | Cumulative Competencies | Review Lesson Plans and Suggested Resources | Vocabulary | Standards/Eligible
Content | | | | | | Students will summarize Categorical and Review Jeopardy Data can be modeled and How can Probability and A1.2.3.1.1 Calculate and/or interpret the range, quartiles, and interquartile range of data. | Two days are reserved for Mrs. Barnes to come in and do a guidance lesson. *Note: These days are sprinkled in throughout the nine-week period. Not the end of the session. | | | | | | | | | | | | |---|--|---|-----------------------|---|--|--|--|--|--|--|--| | Built-In Day to compensate for Two-Hour Delays, Unfinished Assignments, Events, etc. | | | | | | | | | | | | | Data can be
modeled and
used to make
inferences | How can
Probability and
data analysis be
used to make
predictions? | Categorical
and
Quantitative
Data
Probability | Two Team
Challenge | Students will summarize what they learned from the nine-week course by participating in an educational review game. | | A1.2.3.1.1 Calculate and/or interpret the range, quartiles, and interquartile range of data. A1.2.3.2.1 Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation. A1.2.3.2.2 Analyze data, make predictions, and/or answer questions based on displayed data (box-and-whisker plots, stem-and-leaf plots, scatter plots, measures of central tendency, or other representations). A1.2.3.3.1 Find probabilities for compound events (e.g., find probability of red and blue, find probability | | | | | | | used to make
inferences | data analysis be
used to make
predictions? | Quantitative
Data
Probability | | what they
learned from
the nine-week
course by
participating in
an educational
review game. | | A1.2.3.2.1 Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation. A1.2.3.2.2 Analyze data, make predictions, and/or answer questions based on displayed data (box-and-whisker plots, stem-and-leaf plots, scatter plots, measures of central tendency, or other representations). A1.2.3.3.1 Find probabilities for compound events (e.g., find probability of red and blue, find probability | | | | | |